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Statistical Mechanics in Collective Coordinates
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We study the transformation of the statistical mechanics of N particles to the
statistical mechanics of fields, that are the collective coordinates, describing the
system. We give an explicit expression for the functional Fourier transform
of the Jacobian of the transformation from particle to collective coordinate
and derive the Fokker–Planck equation in terms of the collective coordinates.
Simple approximations, leading to Debye–Huckel theory and to the hard sphere
Percus–Yevick equation are discussed.
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1. INTRODUCTION

Collective coordinates have provided a powerful insight into statistical
problems notably in plasma physics, (1) liquid helium, (2) electrolytes (3) and
the general theory of liquids. (4, 5) The use of collective coordinates raises
several interesting problems, which we consider in this paper.

It is clear that when a classical system of identical particles is con-
sidered, all the physically relevant observables that depend only on the
coordinates, are functionals of the density

r(rF)=C
a

d(rF− RF a), (1)

where RF a are the coordinates of the particles (more general observables that
depend also on momenta are functionals of the density and the current
density). We consider a system of N particles enclosed in a cubic box of



size L and periodic boundary conditions. The natural collective coordinates
are the Fourier transforms, with qF ] 0, of the density

rq=
1

`N
F r(rF) e iqF · rFd3r, with qi=

2pni

L
. (2)

An obvious problem in using the rq’s, is that their number is infinite, while
the number of degrees of freedom is 3N. This means that only 3N are inde-
pendent and all the other collective coordinates can be written as functionals of
the independent 3N. It is clear, however, that it is best to treat the collective
coordinates in a symmetric way, keeping the infinite number of collective
coordinates. We will show in the following, how this can be done by introduc-
ing the Jacobian of the transformation from particle to collective coordinates.

An additional difficulty comes with the introduction of hard cores.
Experience has shown that approximation of a hard core by a soft core is
inadequate for, as in all problems which are basically topological, the
values of thermodynamic and transport coefficients is dominated by the
softness and ‘‘hardening’’ of a soft core always leads to false results.
A major advance in the handling of the hard core was made by Percus and
Yevick (4) and we discuss this in our context in Section 3.

We will discuss first the Jacobian of the transformation from particle
to collective coordinates and show that its functional Fourier transform
has a rather simple form. (6) Next we show that the problem of an explicit
form of the Jacobian of transformation can be avoided by deriving an
exact Fokker–Planck equation in collective coordinates.

2. THE JACOBIAN

An average of a quantity G that is a function of the density is given by

OGP=
F D

c

dRc G{ra} exp 5−
1

2kT
C
a, b

W(RF a − RF b)6

F D
c

dRc exp 5−
1

2kT
C
a, b

W(RF a − RF b)6
. (3)

Introducing d functions, we can write the numerator N in as well as
the denominator in the form

N=F Dr(rF) D
c

dRc D
qF ] 0

d 1rq −
1

`N
C
a

e−iqF · RF a 2

× G{ra} exp 5−
r̄

2kT
C Warar−a

6 , (4)
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where Dr denotes functional integration over general real functions r(rF)
with fixed r0=`N, Wa is the Fourier transform of the inter-particle
potential, and r̄ is the average density. (Note that r̄ appears because of our
definition of Fourier components of the density. Note also that since r0 is
fixed the inclusion of the self energy causes no problem.) Defining the
Jacobian

J{r}=F D
c

dRc D
qF ] 0

d 1rq −
1

`N
C
a

e−iqF · RF a 2 , (5)

we see that N can be written as a functional integral over r

N=F Dr(rF) J{r} G{ra} exp 5−
r̄

2kT
C Warar−a

6 , (6)

with a similar equation for the denominator.
Consider now the functional Fourier transform of the Jacobian

J{j}=F Dr(rF) J{r} exp 5− i C
qF ] 0

jqr−q
6 , (7)

using Eq. (5), we find that

J{j}=F Dr(rF) D
c

dRc D
qF ] 0

d 1rq −
1

`N
C
a

e−iqF · RF a 2 exp 5− i C
qF ] 0

jqr−q
6

=[C{j}]N, (8)

where

C{j}=F dRF exp[ − ij(RF )], (9)

and

j(rF)=−
1

`N
C
q

jqe−iqF · rF. (10)

Since N is extensively large, this can be written also in terms of a
fugacity

[C{j}]N=
N!
2pi

G
dm

mN+1 exp[mC{j}] (11)
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so we could use J{j, m} instead of J{j, N}

J{j, m}=exp[mC{j}] (12)

Thus

J{r, m}=N F Dj exp[mC{j}] exp 5i C jqr−q
6 , (13)

where N is the proper normalization and the sum now is over all q.
Perturbation theory made by expanding (7) or (13) in j yields a simple

approximation for J{r}. We will not dwell on this here because we will
obtain those approximations from the dynamical equations to be considered
in the following.

3. DYNAMICS

The dynamic problem is of obvious interest in its own right, but also
offers a new way to approach the hard core. The original study of dynam-
ics of Bohm and Pines produced plasma oscillation, i.e., a property of r̈,
but the problems we have been interested in are better expressed by noise
methods of Langevin and Smoluchowski. Although current usage is to call
these equations Fokker–Planck, they are not really F-P for this classic
work on Brownian dynamic involves the velocities (the ancient paper of
Chandrasekhar (7) is still a splendid introduction to this equation.) We
want to use the r and j directly and so base ourselves on the equation for
P(Ra,..., t)

“P
“t

− C
a

D
“

“Ra

1 “

“Ra

+
1

kT
“W
“Ra

2 P=0 (14)

whose equilibrium solution, of course, is the Gibbs distribution P 3 e− W
kT.

Now introduce P{r} via

P{r, t}=F D
a

dRa D
q ] 0

5rq −
1

`N
C
b

e iqF · RFb6 P{RF b, t} (15)

Therefore, multiply (14) by <q ] 0 [rq − 1
`N

;b e−iqF · RFb] and integrate all
over R to obtain

“P
“t

−
D

`N
C
k, j

(k · j)
“

“rk
rk+j

“

“rj
P+C

k
Dk2 “

“rk
rkP

− C
r̄D

`N
(k · j)

“

“rk
rk − jrj

Wj

kT
P=0 (16)
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Similarly one can write this in Fourier variables j

“P
“t

+i
D

`N
C
k, j

(k · j) j−k
“

“j−k − j
j−jP+C

k
Dk2 “

“j−k
j−kP

− i C
r̄D

`N
(k · j) j−k

“

“j−k+j

“

“j−j

Wj

kT
P=0 (17)

and verify that the steady state solution is

P 3 exp 5− C
k

jk
1 kT

4W
2 j−k+N log F e−j(R) dR6. (18)

The main strength of the above equations is that it may be used to
obtain directly hierarchies of equations for average quantities. Let F be
a functional of the density that is not expected to diverge too strongly,
like rqr−q, ra1

ra2
r−a1 − a2

, etc. Suppose we are interested only in equilibrium
properties. Then “P

“t =0, we multiply Eq. (16) by F and integrate by parts to
obtain

C
k

Dk2 7 “F

“rk
rk
8−

D

`N
C
k, j

(k · j) 7 “
2F

“rkrj
rk+j

8

+
r̄D

`N
C
k, j

(k · j)
Wj

kT
7 “F

“rk
rk − jrj

8=0. (19)

It is clear that the rq’s are dependent (being an infinite set of coordi-
nates in contrast to the 3N components of the Ra’s). Therefore, an infinite
number of relations must hold among the rq’s. This fact may lead to
interesting sum rules.

A similar equation can be obtained for the dynamical problem in
which a quantity A is measured at equilibrium, the system is allowed to
evolve freely and then a quantity B is measured at a later time t. We stick
at present to the equilibrium problem.

If a ‘‘random phase’’ approximation is made by keeping the sum over
k and j only those terms where one of the rŒs is r0=`N (Note that
derivatives are never with respect to r0) the equation collapses to

“P
“t

− C
k

Dk2 “

“rk

1 “

“r−k
+rk+

r̄Wkrk

kT
2 P=0 (20)
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with the equilibrium solution

Peq 3 exp 5−
1
2

C
k

11+
r̄Wk

kT
2 rkr−k

6 , (21)

that leads, for example, to the Debye–Huckel theory.
The simple RPA form given above can be used to derive the Percus–

Yevick [4] equation for hard spheres. To do this we have to think of the
hard sphere system as an ideal gas with a constraint that forces the pair
distribution function to vanish inside the hard core radius. The pair distri-
bution function is given by

g2(rF1 − rF2)=
1
r̄2 Or(rF1) r(rF2) − r̄d(rF1 − rF2)P. (22)

Imposing the constraint is done by adding to the Hamiltonian a term
1
2 > d3r d3rŒ l(rF− rFŒ) r(rF) r(rFŒ) where the Lagrange multiplier makes g2

vanish for |rF1 − rF2 | < R, the hard core radius. The Lagrange multiplier must
vanish outside the hard core radius because the constraint is just within
that radius. Denoting by lk the Fourier transform of l(rF), we find that in
Eq. (20) Wk is replaced by lk, so that

Orkr−kP=
1

1+
r̄lk

kT

—
1

1+l̃k

, (23)

where l̃k is the Fourier transform of a function that vanishes outside the
hard core radius. Our equations are thus g2(r)=0 for r < R and l̃(r)=0 for
r \ R, (8) which are the Percus–Yevick equations for a system of hard spheres.
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